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Abstract: What is it like to be at the lower boundaries of consciousness? Disorders of consciousness
such as coma, the vegetative state, and the minimally conscious state are among the most mysterious
and least understood conditions of the human brain. Particularly complicated is the assessment of
residual cognitive functioning and awareness for diagnostic, rehabilitative, legal, and ethical purposes.
In this article, we present a novel functional magnetic resonance imaging exploration of visual cogni-
tion in a patient with a severe disorder of consciousness. This battery of tests, first developed in
healthy volunteers, assesses increasingly complex transformations of visual information along a known
caudal to rostral gradient from occipital to temporal cortex. In the first five levels, the battery assesses
(passive) processing of light, color, motion, coherent shapes, and object categories (i.e., faces, houses).
At the final level, the battery assesses the ability to voluntarily deploy visual attention in order to focus
on one of two competing stimuli. In the patient, this approach revealed appropriate brain activations,
undistinguishable from those seen in healthy and aware volunteers. In addition, the ability of the
patient to focus one of two competing stimuli, and switch between them on command, also suggests
that he retained the ability to access, to some degree, his own visual representations. Hum Brain Mapp
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INTRODUCTION

In recent years, much progress has been achieved in char-
acterizing some of the most mysterious and least understood
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conditions of the human brain such as coma, the vegetative
state (VS) [Giacino et al., 2002; Jennett and Plum, 1972; The
Multi-Society Task Force on PVS, 1994a,b], and the minimally
conscious state (MCS) [Giacino et al., 2002]. These condition,
often collectively referred to as disorders of consciousness
(DOCQ), typically occur after catastrophic (traumatic or non-
traumatic) brain injury, and affect the two cardinal elements
of consciousness: wakefulness and awareness [Laureys,
2005]. Patients in an acute state of coma, for example, appear
to be neither awake nor aware of themselves or their environ-
ment [Posner et al., 2007]. MCS patients, on the other hand,
appear to be awake, and can demonstrate some level of
awareness [Giacino et al., 2002]. In between these two condi-
tions, VS patients exhibit a perplexing dissociation in which
they appear to wake up and fall asleep periodically (inas-
much as they open and close their eyes) but show no recog-
nizable sign of awareness [Monti et al., 2010a].
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From a diagnostic point of view, the main challenge
relies in determining the level of residual cognition and
awareness present. With respect to the latter issue, how-
ever, in the absence of an objective measure to quantify its
presence, the boundary between awareness and nonaware-
ness remains elusive, making it difficult to correctly distin-
guish VS from MCS patients. This is confirmed by a 40%
estimated misdiagnosis rate by which (aware) MCS
patients are mistakenly judged to be VS [Andrews et al,,
1996; Childs et al., 1993; Gill-Thwaites and Munday, 2004;
Schnakers et al., 2009]. Recent studies have shown that it
is possible to employ noninvasive neuroimaging techni-
ques, such as electroencephalography (EEG) and func-
tional magnetic resonance imaging (fMRI), to covertly
assess the presence of residual cognitive processing
[Bekinschtein et al.,, 2009; Coleman et al., 2007; Faugeras
et al., 2011; Monti et al., 2009a; Qin et al., 2008; Schnakers
et al., 2008] as well as consciousness [Bekinschtein et al.,
2011; Monti et al., 2010b; Owen et al., 2006]. Despite these
advances, however, little is known about the degree of
mental life possible in these patients [Bernat, 2002; Ropper,
2010], an issue that is paramount for guiding medical and
rehabilitative decision-making, and for informing the legal
and ethical discussions concerning life at the lower boun-
daries of consciousness [Andrews et al., 1996; Bernat, 2002;
Elliott and Walker, 2005; Fins et al., 2008].

In this report we focus on the extent to which a severely
injured brain can represent visual information, as a first
exploration into what representation of the surrounding
world is possible in a condition of impaired consciousness.
Crucially, this assessment relies entirely on “brain behav-
ior” rather than on motoric behavior [Monti and Owen,
2010], in consideration of the fact that motor output is
often severely constrained in this patient group. Indeed, it
has been shown recently that, in a subset of patients who
fail to demonstrate motor response to commands, signifi-
cant subthreshold muscle activity [Bekinschtein et al.,
2008] and significant contralateral premotor cortex activa-
tion [Bekinschtein et al., 2011] can still be detected.

Capitalizing on a relatively rich understanding of
the neurocognitive systems underlying visual processing
[Tootell et al., 1998], we developed an fMRI battery of tests
probing increasingly complex stages of information proc-
essing along a known caudal to rostral occipitotemporal
gradient. As illustrated in Figure 1, the battery assesses
processing of visual information at multiple levels, from ba-
sic response to light, to response to visual properties such
as color, motion, and coherent outlines/objects, as well as
response to specific categories of objects (i.e., faces, houses).
In addition, at the top level of the battery, we tested
whether patients could access their visual representations,
by assessing their ability to deploy top-down attention in
order to resolve an ambiguous stimulus comprised of two
conflicting stimuli in response to verbal cues (cf. Fig. 1).

We first developed the paradigm in a group of healthy
volunteers and then tested its efficacy in a patient with a
severe disorder of consciousness.

Cognitive Complexity

1l Shapes/Objects

Figure I.
lllustration of the levels of visual cognition probed by the bat-
tery of tests, and the approximate regions of the brain expected
to be activated by each level. [Color figure can be viewed in the
online issue, which is available at wileyonlinelibrary.com.]

MATERIALS AND METHODS
Healthy Participants

Twenty-one volunteers (13 females) with no history of
neurological disorder participated in the study. All partici-
pants signed informed consent before the experimental
session and participated for monetary compensation.

Patient History and Description

One patient with a DOC was tested on the same battery
of tasks. The patient was hospitalized following a trau-
matic brain injury in May 2006. Initial computed tomogra-
phy scans revealed left parietal subdural and extradural
hematoma, in addition to right subdural hematoma. Fur-
ther scans also revealed evidence of diffuse hemorrhage.
Overall, the neurological examination suggested the possi-
bility of diffuse axonal injury. Over the next 2 years,
assessment in specialized centers revealed inconsistent
but reproducible evidence of awareness of the self and
environment. When admitted for fMRI testing, 18 months
postinjury, the patient scored 11 (out of a maximum of 23)
on the JFK Coma Recovery Scale [Giacino et al., 2004],
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consistent with an MCS diagnosis (CRS-R subscores: audi-
tory: 2—localization to sound; visual: 3—pursuit eye
movement; motor: 2—flexion withdrawal, oromotor/
verbal: 2—vocalization/oral movement; communication:
0—none; arousal: 2—eye opening without stimulation).
Overall, the presence of consciousness was revealed by the
ability of the patient to visually track. However, in none of
the behavioral assessments was it possible to observe any
sign of command following.

The presence of a basic response to visual stimulation
was assessed with visual evoked potentials elicited using a
flash lamp at 3 Hz. Bilateral visual cortex responses were
apparent, displaying latencies within an acceptable range
(wave NI, left hemisphere O1 = 86.7 ms, midline Oz =
85.2 ms, right hemisphere O2 = 86.7 ms), and therefore
confirming preserved neural axes along the retina to thal-
ami to primary visual cortex pathway.

The patient underwent the visual hierarchy paradigm
described here as part of a wider set of fMRI tests which
also included a test of mental imagery which is specifically
designed to reveal evidence of command following in
patients of this sort [Boly et al., 2007; Monti et al., 2010b;
Owen et al., 2006].

Signed assent from the patient’s next of kin was
acquired before investigation. This study was approved by
the Cambridge (UK) Local Research Ethics Committee.

Task

In the first five levels of the battery, participants were
given no task other than to look at the display. At the
sixth (and last) level, a brief aural and visual cue was
administered at the beginning of each block, instructing
participants to focus on one of two superimposed stimuli.

Stimuli

In the first level, a flashing checkerboard (at 2 Hz) was
presented, in alternation with a black screen in an ABAB
fashion, for 16-s blocks, (see below). In the second level,
chromatic Mondrian patterns, similar to those used in pre-
vious studies of color perception [McKeefry and Zeki,
1997], were alternated with acromatic versions of the same
displays. In every 16-s block, four patterns were presented,
for 4 s each. Object perception, in the third level, was
probed using the very same stimuli employed in previous
research of object processing [Kourtzi and Kanwisher,
2000] (and exemplified in Fig. 1). Specifically, figures of
concrete objects and abstract (but coherent) shapes were
compared with scrambled versions of the same figures. In
both conditions, each cycle included four stimuli of each
type (i.e., coherent, scrambled), presented in random
order. Each figure was shown only once. In the fourth
level, a random display of dots moving with 100% congru-
ence in each of four direction (0°, 90°, 180°, 270°), was
alternated with a similar, but motionless, random display.
In both conditions the random display of dots was

refreshed every 4 s. In each 16-s block of moving dots all
four directions of movement were presented, in random
order. In the fifth level, sensitivity to different categories
of visual objects was tested by comparing blocks of
pictures of faces to blocks of figures of houses. As for the
previous levels, each block included four figures, pre-
sented in random order. Each figure was presented only
once. At the top level of the battery, all blocks included a
display which comprised a superimposed face and a house,
as described in detail in a previous study [Hampshire and
Owen, 2006]. Blocks only differed in whether participants
were instructed to focus on the faces (in half the blocks) or
on the houses (in the remaining blocks). Each block
included four different superimposed figures, each pre-
sented for 4 s. Each overlay figure was presented twice,
once in the blocks in which participants had to focus on
the face, and once in the blocks in which participants had
to focus on the house.

Experimental Design

The first five levels employed the same experimental
design. Each lasted a total of 320 s, and included twenty
16-s block (i.e., 10 blocks for each condition). The two cate-
gories of stimuli (e.g., light vs. dark, faces vs. houses)
were presented in alternating blocks. Within each block,
the ordering of stimuli was fully randomized. Where mul-
tiple stimuli were available for each category (i.e., from
the second level upwards), each block included four stim-
uli, displayed for 4 s each. The sixth level was almost
identical to the previous ones, except for a 2-s cue, at the
beginning of each block, instructing participants whether
to focus on the faces or the houses. The verbal cue “look
at the houses/faces” was delivered, concurrently, visually,
and aurally. This last run lasted a total of 360 s.

fMRI Data Acquisition

Volunteer data was collected at the MRC Cognition and
Brain Sciences Unit, Cambridge (UK) on a 3T Tim Trio Sie-
mens system. Tl-weighted images were acquired with a
three-dimensional MP-RAGE sequence (TR 2,300 ms, TE
2.47 ms, TI 900 ms, 150 slices, 1 x 1 x 1.2 mm? resolution).
T2* sensitive images were acquired using an echo planar
sequence (TR = 2,000 ms, TE = 30 ms, FA = 78°, 32 de-
scending slices, 3 x 3 x 3.75mm? resolution). Patient data
was also acquired on a 3T Tim Trio Siemens system, with
identical parameters, at the Wolfson Brain Imaging Centre
at Addenbrooke’s Hospital, in Cambridge (UK).

fMRI Data Analysis

Analysis methods were performed using FSL 5.91, part
of FSL (FMRIB’s Software Library; available at: www.
fmrib.ox.ac.uk/fsl). Before functional analyses, each
individual EPI time-series was motion corrected to the
middle time point using a six-parameter, rigid-body
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Healthy Volunteers

Patient

Figure 2.
Levels |-IV. Brain activation for healthy volunteers (left) and the patient (right). [Color figure can
be viewed in the online issue, which is available at wileyonlinelibrary.com.]

method (as implemented in MCFLIRT [Jenkinson et al.,
2002]). Data were smoothed with a Gaussian kernel of 8
mm FWHM and signal from extraneous nonbrain tissue
was removed using BET (Brain Extraction Tool [Smith,
2002]). The four-dimensional data were normalized to the
grand-mean intensity by a single multiplicative factor and
high-pass filtered (Gaussian-weighted least-squares straight
line fitting, with sigma = 30.0 s). Finally, functional data
were coregistered to structural images using a seven-param-
eter optimization method [Jenkinson et al., 2002]. Statistical
analyses were performed using a general linear model
approach, as implemented in FEAT (fMRI Expert Analysis
Tool [Jenkinson and Smith, 2001]), including prewhitening
correction for autocorrelation. Given the ABAB design, only
the onset of the B task was modeled and included in the
GLM regression, together with six regressors of noninterest
(translation and rotation motion parameters). In the last
run, an additional regressor of noninterest was added, mod-
eling the cue delivery. In all runs, the blood oxygenation
level dependant (BOLD) response to the stimuli of interest
was compared with its baseline. In the last two runs, how-
ever, the reverse comparison was also performed, to isolate
the neural response to perceiving and focusing on both faces
and houses. Full brain single subject Z-statistic images were
thresholded using clusters determined by Z > 2.5 and a
(corrected) cluster significance threshold of P = 0.001 [Wors-
ley et al., 1992].

In healthy volunteers, group average statistics were also
computed. Before multisubject analyses, each individual
data set was coregistered to the MNI152 standard template

brain using a 12-parameter optimization method [Jenkin-
son et al., 2002]. Group mean statistics for each contrast
were generated with a mixed-effects model resulting from
the use of within-session variance (i.e. fixed-effects) at the
single subject level and between-session variance (i.e. ran-
dome-effects) at the group level [Henson, 2005]. Statistical
parametric maps were computed in FLAME [Beckmann
et al., 2003; Woolrich et al., 2004] and thresholded at P <
0.05 Bonferroni corrected. For the group of healthy volun-
teers and the patient alike, analysis of the last level of the
hierarchy was restricted to the fusiform and parahippo-
campal gyri, as defined by structural masks derived from
the Harvard-Oxford probabilistic atlas available in FSL.

RESULTS

When tested on the visual hierarchy, the patient exhib-
ited a set of activations (Fig. 2 and Table I) that closely
matched those observed in the healthy volunteers (Fig. 3
and Table II). These results not only demonstrate that all
of the tested stages of visual processing were intact in the
patient, but also confirm that he was able to willfully
access visual representations and follow commands.

More specifically, as depicted in Figure 2, comparison of
flashing checkerboards with a black screen revealed wide-
spread occipital activations in striate and extrastriate corti-
ces. Coherent shapes and objects, when contrasted to
scrambled versions of the same figures, revealed robust
bilateral activation in a region of occipital cortex consistent
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TABLE |I. DOC patient: Activation peaks for each

contrast
X y z VA
Checkerboards
Occipital pole 8 -90 6 19.90
Occipital pole —12 -96 -8 15.00
Lateral occipital cortex 28 -92 2 11.90
Intracalcarine sulcus 18 —82 -2 9.98
Lateral occipital cortex —26 —94 2 9.92
Thalamus -8 —34 0 4.24
Thalamus 10 -30 0 3.41
Colors
n/a
Shapes
Lateral occipital complex -38 -90 18 9.78
(inferior division)
Lateral occipital complex —28 —74 36 5.81
(superior division)
Lateral occipital complex -52 -70 0 5.53
(inferior division)
Lateral occipital complex 38 —80 6 3.94
(inferior division)
Lateral occipital complex 36 —84 14 3.73
(superior division)
Motion
Intracalcarine cortex -10 -78 8 10.30
Intracalcarine cortex 6 —84 2 8.10
Occipital pole 18 -90 36 8.67
Occipital pole —-16 —104 12 7.75
Lateral occipital cortex (V5) 46 -72 8 8.59
Lateral occipital cortex (V5) —36 —74 10 5.60
Faces
Lateral occipital cortex -52 —64 38 5.43
(superior division)
Lateral occipital 42 -78 -8 10.10
cortex/fusiform gyrus
Lateral occipital cortex 52 -78 2 5.06
(inferior division)
Fusiform gyrus 46 —54 —-16 8.75
Lingual gyrus -8 -82 -2 6.07
Fusiform gyrus —48 —52 —18 3.58
Houses
Intracalcarine cortex 8 —86 4 21.34
Parahippocampal gyrus —24 —48 -8 12.25
Parahippocampal gyrus 22 —42 -10 20.30
Occipital pole —22 -92 —-10 11.10
Faces overlay
Fusiform gyrus 48 -50 27 5.46
Lateral occipital complex 46 -70 -14 6.28
Fusiform gyrus —42 —68 —16 4.00
Houses overlay
Parahippocampal gyrus 24 —44 -12 523
Parahippocampal gyrus —24 —48 —14 4.01

with the localization of the lateral occipital complex (LOC)
[Kourtzi and Kanwisher, 2000]. Motion stimuli elicited
bilateral activation at the junction between the middle tem-
poral and occipital cortices, consistent with previous local-
ization of the human motion selective area MT/V5

[Tootell et al., 1995], as well as large segments of medial
occipital cortex. These results closely replicate what was
observed in healthy volunteers.

Similarly, in both the patient and the controls, pictures
of faces, as compared with pictures of houses, revealed
strong bilateral activation in the face selective fusiform
area (FFA) (see Fig. 3 and Table II) [Kanwisher et al., 1997;
Puce et al., 1995]. The converse subtraction elicited strong
bilateral activation in the parahippocampal place selective
area (PPA) [Epstein and Kanwisher, 1998].

At the top level of the battery, a comparison of epochs
in which the patient was instructed to focus on the faces,
versus epochs in which he was instructed to focus on the
houses, revealed significant activity in right FFA. The
reverse comparison elicited strong bilateral activation in
the PPA. The same results were observed in healthy vol-
unteers. This result is noteworthy because the stimuli in
the two conditions were absolutely identical (i.e., the very
same images featured in both conditions), and therefore,
the activation must reflect a purely top-down shift of
attention. Furthermore, the time-course of the peak voxels
in the PPA and FFA for both the patient and a sample
subject (Fig. 3, respectively), closely match the onset and
offset of each epoch, confirming that the subtraction
results reflected a consistent, sustained, and alternating
up- and down-modulation of the fusiform and parahippo-
campal regions.

Unfortunately, due to excessive movement (>3 c¢m), the
color processing level of the battery could not be analyzed
in the patient. In healthy volunteers, however, colored
Mondrian patterns, as compared with the same displays
shown in monochrome shades, resulted in activations in
occipital cortex as well as ventral occipitotemporal cortex
consistent with previous reports of color sensitive human
V4 [McKeefry and Zeki, 1997] or V8 [Hadjikhani et al.,
1998] and nearby regions [Beauchamp et al., 1999].

In the same scanning session, the patient also under-
went a test of awareness in which participants are
instructed to alternate epochs of mental imagery with
epochs of rest [Boly et al., 2007, Monti et al., 2010b; Owen
et al.,, 2006]. However, in contrast to the results obtained
in the visual hierarchy, presented here, no activation could
be detected in the expected neuroanatomical locations in
the supplementary motor area (SMA) and PPA, during ei-
ther the motor (i.e. “imagine playing tennis”) or the spatial
imagery (i.e. “imagine walking around the rooms of your
house”) tasks.

DISCUSSION

Detecting residual cognitive function and consciousness
in patients surviving severe brain injury is extremely chal-
lenging but crucial for correct diagnosis, care taking strat-
egies, and general quality of life [Andrews et al., 1996;
Elliott and Walker, 2005]. We used fMRI to assess, in a
systematic fashion, the integrity of visual processing in a
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Figure 3.
Levels V-VI. Brain activation and illustrative voxel time-course for healthy volunteers (left) and
the patient (right). [Color figure can be viewed in the online issue, which is available at
wileyonlinelibrary.com.]

patient with impaired consciousness. The results suggest
that, despite the severe brain injury and the impairment of
consciousness, several aspects of visual cognition were
preserved, indicating that the patient may have relatively
sophisticated (visually driven) representations of his
environment, and that the visual modality is available for
diagnostic and rehabilitative purposes. This result is par-
ticularly important in this clinical setting, since it is well
known that visual impairment is one of the leading causes
of misdiagnosis in this patient group. In a large retrospec-
tive study, for example, blindness and severe visual
impairment accounted for 65% of patient misdiagnoses
[Andrews et al., 1996]. Similarly, in other studies, aspects
of visual cognition have been used to discriminate

between VS and MCS patients [Schnakers et al., 2006;
Vanhaudenhuyse et al., 2008], and can signal recovery
from VS [Giacino et al., 2002]. Furthermore, at the highest
level, the results suggest that the patient could comprehend
language, access the contents of (some) visual information,
and follow commands—something that could not be estab-
lished at the bedside despite repeated examinations.

It is important to stress, however, that the results
presented here should be taken as a proof-of-concept, and
do not allow any inference concerning the prevalence of
this kind of “brain behavior” in the population in general.
Indeed, at the time of this finding, only five other patients
had participated in the task. Preliminary analyses
suggest that response to passive stimulation is likely to be
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TABLE Il. Healthy volunteers: Activation peaks for each

contrast
X Y z VA

Checkerboards

Occipital pole 18 —100 10 1694

Occipital pole —16 —100 2 16.94

Lingual gyrus 8 -90 -8  16.16

Lateral occipital cortex -30 -90 -8 1444

Lateral occipital cortex 30 -90 -2 1392

Thalamus 22 —28 -4 1492

Thalamus —22 —28 -8 1488
Colors

Lingual gyrus 18 -78  —16 53

Occupital fusiform gyrus (V4) 24 —66 -16 5.19

Lingual gyrus 2 -90 -10 7.4

Occipital pole -14 104 6 7.47

Occipital pole 14 -98 10 4.96
Shapes

Lateral occipital cortex —44 —74 -8 9.37

(inferior division)

Lateral occipital cortex 46 -78 -8 7.82

(inferior division)

Lateral occipital cortex 48 —-68  —12 7.87

(inferior division)
Motion

Lingual gyrus 12 -76 0 9.04

Lingual gyrus -8 —76 2 8.07

Lateral occipital cortex/V5 46 —68 2 8.59

Lateral occipital cortex/V5 —42 -70 6 8.65

Occipital pole 10 -96 10 7.23

Occipital pole -6 —100 2 6.5
Faces

Amygdala 20 -6 —-16  10.61

Amygdala -20 -6 —18 8.64

Fusiform gyrus 44 —48 —20 11.29

Fusiform gyrus —44 —54 -22 9.23

Lateral occipital cortex

(inferior division)

Frontal orbital cortex 24 30 -20 534
Houses

Parahippocampal gyrus 24 —40 14 11.84

Parahippocampal gyrus —26 —44 =10 1297

Lingual gyrus 14 -78 —4 6.51
Faces overlay

Fusiform gyrus 44 —48 =20 4.8

Fusiform gyrus —42 —48 22 4.23
Houses overlay

Parahippocampal gyrus 26 —46  —16 7.63

Parahippocampal gyrus -28 —-46  —12 8.22

observable across VS and MCS patients, in keeping with
the very few existing case reports [Giacino et al., 2006,
2009; Menon et al., 1998]. In our sample, one MCS patient
exhibited appropriate activity in all passive levels, while
other three (one VS and two MCS) exhibited limited acti-
vation in response to checkerboards and motion stimuli.
Finally, one VS patient exhibited no response to any of the
tasks. Whether one in six is a realistic estimate of the prev-

alence of this kind of “active” brain behavior in patients
with disorders of consciousness, and the degree by which
behavioral and neuroimaging results might mismatch in
this context, remains entirely to be assessed (data collec-
tion for a large-cohort report is currently ongoing).

Although this study presents an initial step toward
understanding what the world might “look like” at the
lower boundaries of consciousness, it is important to be
clear about what inferences these data support. The results
observed in the first five levels of the battery do not neces-
sarily confirm that the patient was “seeing” the stimuli.
Differential brain activation in response to different stimu-
lation only confirms that the brain detected a difference
between the two types of stimulation (with or without
subjective perception). Indeed, it is well known that brain
activation in response to visual input can occur in the
absence of subjective perception [Dehaene et al., 2006].
However, in the last level of the battery, differential brain
activation was observed in response to the same stimula-
tion, presented under differing “mind-sets.” The results
are difficult to interpret without assuming that there was a
willful decision by the patient to focus, as instructed, on
one of the two possible perceptions of the conflicting vis-
ual display. It is also important to highlight that, while it
is well known that resolution of ambiguous or bistable vis-
ual displays can occur spontaneously [Tong et al., 1998],
this would not be expected to occur at regular 16 s inter-
vals, as observed here, matching not only the timing of the
cue delivery, but also the content of the cue itself. Never-
theless, whether the “subjective” experience of the patient
matches that typical of healthy individuals is impossible to
determine—as much as it is not possible to compare the
subjective experiences of any two healthy individuals.
Could automatic processes, elicited to the verbal cue “look
at the faces/houses” account for the observed results? This
is unlikely for several reasons. First, the words “face” and
“house” alone have been shown to produce no appreciable
activation in fusiform and parahippocampal regions [Rein-
holz and Pollmann, 2005]. Second, semantic priming
effects, which typically are observed in the form of
decreased activation, occur in different regions than those
reported here, including prefrontal, lateral temporal, and
parietal cortices [Giesbrecht et al., 2004; Kircher et al.,
2009]. Finally, priming effects peak within 3 to 4 s, and
return to baseline within 8 s of the stimulus [Rissman
et al., 2003], a temporal profile that does not match the
protracted 16 s activity observed in our study.

It is interesting to note that while this patient could
demonstrate top-down allocation of attention on command
in response to the ambiguous stimuli presented, he was
unable to show command following when a previously
validated mental imagery paradigm was used [Boly et al.,
2007; Owen et al., 2006]. It is possible that, at the time of
the mental imagery task, the patient had transiently lost
consciousness, fallen asleep, or decided not to comply
with the instructions. On the other hand, it is also possible
that the mental imagery task required some additional
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cognitive process that was not available to the patient,
thus preventing successful completion of the task, despite
being aware. This possibility would be consistent with the
highly variable etiology typical of this patient group, espe-
cially following traumatic brain injury, where the specific
site of the trauma and consequent neural damage may
produce different patterns of sensory deprivation, high-
lighting the necessity for a comprehensive and multimo-
dality approach to patient testing [Coleman et al., 2009]. In
this latter scenario, the visual hierarchy, and in particular
the top-down attention task, provides an additional
approach for assessing the presence of consciousness in
this patient group.

Overall, one of the greatest difficulties in this patient
group is the fact that, at the boundary between intermit-
tent minimal awareness and complete lack of awareness, it
is still unknown how much mental life is possible after
catastrophic brain injury [Ropper, 2010]. This ambiguity
often underlies much of the legal, economic, and ethical
debate surrounding these patients. Functional neuroimag-
ing may be uniquely suited to map residual cognitive
function in this setting [Lamme, 2010], especially where
behavioral output is limited or constrained [Monti et al.,
2009b; Owen and Coleman, 2008]. Indeed, a growing num-
ber of studies have started to probe relatively sophisticated
aspects of the mental life of these patients, including lan-
guage comprehension [Coleman et al., 2007], the ability to
maintain information through time [Monti et al., 2009a],
self-awareness [Qin et al., 2010], willful adoption of mental
states [Owen et al., 2006], and even the capacity for basic
communication [Monti et al.,, 2010b]. As this evidence
accumulates, the elements of mental life that may be main-
tained at the lower boundaries of consciousness become
increasingly clear.
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